
Chapter 2. Development and disease.  
 
Our understanding of developmental mechanisms has been transformed during the 20th 
century by advances in genetic technology and molecular biology. The key genes regulating 
embryonic segmentation and the allocation of regional fate were identified in Drosophila 1 2 3 4 
5 6 7 and are highly conserved in other segmented organisms. An additional set of genes 
regulating epithelial planar cell polarity (PCP) has been studied 8 9 10, although mainly during 
later development. The relationship between embryonic patterning and cellular polarity 
remains unclear. Recently, novel roles for the core PCP genes have been identified in 
neuronal function and disease mechanisms, both in model organisms and humans. For 
example, the mammalian Prickle (Pk) orthologues (Pk-1, -2 and -3) are expressed during 
embryonic convergent extension movements, somite formation and left-right symmetry 
breaking; with later functions during limb growth 11 12 13 14. In the zebrafish, Pk orthologues 
are required for cell motility during gastrulation and neuronal migration 15. Pk-associated 
disease syndromes include autism spectrum disorders, myoclonus epilepsy, lissencephaly and 
cancer metastasis 16 17 18 19 20 21 22 23 24; similar defects are associated with other PCP mutants, 
including neural tube malformations in Celsr1 and Celsr3 25 26 27. Similarly, Testin (Tes) has a 
female germline function and acts as a tumour suppressor in mice and humans 28 29. Thus, 
PCP gene functions regulate complex developmental processes and are associated with 
multiple disease syndromes. However, the PCP genes do not form a discrete group, and their 
associated mutant phenotypes depend on interactions between transcription factors (TFs), 
growth factors (GFs) and morphogens. Regulation of none of these genetic functions is 
independent of the others. 
 
Summary: 
 
Multiple morphogenetic defects and adult disease syndromes are associated with mis-
regulation of PCP signalling interactions. These processes are co-ordinated between 
individual cells, across epithelial fields, and maintained within adult tissues. 
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